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Abstract The distribution of solute arrival times, W(t;x), at position x in disordered porous
media does not generally follow Gaussian statistics. A previous publication determined
W(t;x) in the absence of diffusion from a synthesis of critical path, percolation scaling,
and cluster statistics of percolation. In that publication, W(t;x) as obtained from theory,
was compared with simulations in the particular case of advective solute transport through
a two-dimensional model porous medium at the percolation threshold for various lengths x.
The simulations also did not include the effects of diffusion. Our prediction was apparently
verified. In the current work we present numerical results related to moments of W(x; t),
the spatial solute distribution at arbitrary time, and extend the theory to consider effects of
molecular diffusion in an asymptotic sense for large Peclet numbers, Pe. However, results
for the scaling of the dispersion coefficient in the range 1 < Pe < 100 agree with those of
other authors, while results for the dispersivity as a function of spatial scale also appear to
explain experiment.

Keywords Percolation theory · Porous media · Solute dispersion · Long-tailed distribution

1 Introduction

Classical continuum theory [1] of porous media predicts that a pulse of solutes introduced
uniformly into a column with mean flow velocity ν will subsequently obey Gaussian spread-
ing about a mean flow distance, νt . Such spreading is not normally seen [2–12], with solute
arrival enhanced at short and long times [11, 12]. The long-time tail in the arrival-time dis-
tribution can at least be approximated by a power-law, a justification for pursuing analyses
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based on non-classical fractional order partial differential equations [13–21]. The question
of the appropriate analytical form for the arrival time distribution is not resolved yet, with
both power-law [22, 23] and multi-fractal [24] forms suggested in the literature. Our goal
is different: to try to generate a result from first principles for the arrival time distribution
which can be used for realistic prediction of experimental results, rather than to resolve a
theoretical distinction per se. The work here builds on that of [25], which considered disper-
sion only by advection (flow), to include effects of diffusion. In [25] concepts from critical
path analysis [26, 27] were fused with the cluster statistics of percolation theory [28] and de-
scriptions of the topology of large clusters [29, 30] near the percolation threshold. Contrary
to expectations, comparison with experiment here appears to indicate that our treatment is
useful even for systems with small disorder.

Our work is consistent with the historical interpretation that dispersion arises from two
inputs: 1) spatially variable flow velocities, 2) effects of molecular diffusion. Effects of
variable velocity can be understood in different ways. Quoting from [31] (who draw on
works of Sahimi and co-authors [32–35]) “Moreover, the critical path analysis [26] indicates
that transport in a well-connected system in which the hydraulic conductivity distribution is
broad, is actually dominated by a small subset of the system in which the magnitude of the
conductivities is larger than a certain threshold. Heterogeneous porous media can therefore
be mapped onto equivalent percolation networks.”

Quoting from [36], “Dispersion can be dominated by the small fraction of tracer that
is caught in relatively rare, stagnant regions within the flow field,” both “in the convective
limit [37],” and in cases where diffusion is important [38, 39]. While treatments of [37–39]
appeared to be falsified by careful comparison of predictions with experiment [40], some
of the same authors [41] had already by 1988 considered the possibility that the relevant
velocity variability related to percolation disorder.

Although we agree broadly with the quote from [31] we do not rely on a simple map-
ping. Our treatment [25], representing the cluster statistics of percolation theory in terms
of local conductances (allowing flow optimization analogous to critical path analysis), then
incorporates tortuosity as well, revealing that the critical path in an infinite system has zero
velocity. In this framework we find contributions to solute fluxes at the same arrival time
from paths below and above the percolation threshold, characterized by as many as three
different values of a controlling conductance. For small enough system sizes, none of these
values need be particularly close to the percolation threshold so that, in contrast to the quoted
approaches, we need not distinguish between sources of slow velocities.

A classical partial differential equation, called frequently the advection-dispersion equa-
tion, treats advection and diffusion effects distinctly [1],

∂C

∂t
= ∇ · Dh∇C − ν · ∇C (1)

Here C = C(x, t) is the concentration as function of space and time. Diffusion processes
show up in the first term, the second accounts for advection of a concentration gradient. Dh is
called the hydrodynamic dispersion. In homogeneous media, C(x, t) from (1) is a Gaussian
centered at νt with variance Dht . In case ν = 0, Dh ∝ Dm [36], with Dm the molecular
diffusion constant. Equation (1) was derived on a homogeneous continuum, conditions not
satisfied in porous media, leading to problems in its application.

In heterogeneous media, Dh can vary from point to point and ν is a random field, gener-
ated by solving

∇ · ν ∝ −∇ · K∇P = 0 (2)
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In (2) K is the hydraulic conductivity and P is the pressure. A large amount of research
capital has been spent solving numerically the system of (1) and (2) [42–46], but without
advancing the understanding of the problems of (1), since typically the needed behaviors of
Dh must be built into the equations themselves. Other authors have pursued a “stochastic”
differential equations approach, to solving (1) and (2) (which is really a form of perturbation
theory either for K (or log(K)) [47, 48] or for the associated Liouville equation [49–51].
The latter method is typically based on the cumulant expansion of van Kampen [52].

Although the first term represents diffusion effects, for (1) to generate rough correspon-
dence with experiment, the coefficient, Dh, must be larger than the static diffusion constant.
Effects of diffusion appear enhanced by flow so that Dh typically acquires a velocity de-
pendence [32–35]. Even in stochastic theories, solutions to (1) require asymptotically [53]
a Gaussian form for C(x, t), which is not typically observed [2–12, 16, 23] (or is found at
too large a spatial scale [53]). Finally, Dh must include a dependence on the spatial scale of
the measurement [4–8, 10].

A quantity designed, in the Lagrangian representation, to quantify discrepancy between
experiment and the Gaussian solution, is the longitudinal dispersion coefficient [54, 55],

Dl(t) = 1

2

d

dt
σ 2(t) ∝ σ 2(t)

t
(3)

where the proportionality follows if σ 2(t), the variance of the spatial solute distribution,
is a power of the time, t . For Gaussian dispersion, the linear relationship σ 2(t) ∝ t makes
Dl(t) time independent. Since field experiments are pinned to an Eulerian representation,
dispersion is also reported as the ratio of σ 2(t) to the mean travel length, x. The two rep-
resentations are not always equivalent, since the mean solute velocity, vs ≡ x/t is not, in
general, scale-independent (e.g., [29, 32–35]). The typical dependence of Dl(t) is,

Dl(t) ∝ tα (4)

with 0 < α < 1. Reference [11] cites early works on the Continuous Time Random Walk
[56, 57] which show that (4) results from a power-law tail of the arrival time distribution.
Because we find the entire distribution, and because it is not precisely a power-law, we do
not seek the kind of simple analytical relationship between it and the dispersion coefficient
quoted in [11].

Although (1) appears a poor choice as a fundamental transport equation at arbitrary
scales, its validity at the pore scale is not questioned [7]. At the pore scale, the relative
importance of advection and diffusion on solute transport are thus gauged [41] “by [use of]
the Peclet number, Pe = vl/Dm [58, 59]. Here v is the average fluid velocity, l is a charac-
teristic internal length of the medium, and Dm is the molecular diffusion constant. One may
think of Pe as the ratio of the molecular diffusion time l2/Dm to the convection time l/v

over a distance l.” In disordered media v varies greatly in space. At the pore scale, l cor-
responds to a pore dimension, but at scales larger than centimeters, a generalization is not
straightforward [60]. At the pore scale we calculate Pe using pore length scales, diffusion
constants, and velocities. At larger scales we do not yet choose an analogy to Pe. In real
media, of course, Pe must be related to observable quantities.

Calculation of the distribution of arrival times, W(t;x), of solute transported in steady
flow [25] has a close relationship to that of finding the distribution of hydraulic conductivity
values in finite-sized systems [61, 62]. In particular, both are based on the relevance of the
cluster statistics of percolation theory to a distribution of water and associated solute fluxes.
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Such an application leads directly to a formulation of solute transport in terms of both critical
path analysis and percolation scaling [25].

The primary new work here is to incorporate effects of diffusion into those calcula-
tions [25], but a second addition is to generate numerical results for the spatial solute distri-
bution at an arbitrary time, allowing calculation of Dl(t) and derived quantities. The subse-
quent comparison with experiment allows, at least at larger length scales, evaluation of the
relevance of diffusion to experiment, and the relevance of our theoretical results to systems
with varying degrees of heterogeneity.

2 Model of the Porous Medium

Calculations below will exploit concepts of critical path analysis from percolation theory
with a specific model of the porous medium and corresponding distribution of local con-
ductances. We chose a truncated random fractal model [63]. Although such random fractal
models are popular [63–66], the associated power-law distribution of local conductances is
not critical to the results we obtain; in fact, in at least one case we investigate, the same
time-dependence for the dispersion is obtained with a log-normal distribution of conduc-
tance values [31]. Two advantages of the power-law distribution are that it facilitates calcu-
lations and allows representation of a wide-range of heterogeneities through variation of a
single parameter, the fractal dimensionality, D. A third advantage is that, with appropriate
substitutions, it can be applied [67] equally to geologic length scales (meters to kilometers).
When our results (in the absence of diffusion) are compared with experiment, we will make
use of that option.

In the truncated random fractal model [63], pore sizes are distributed according to a
power law described by the fractal dimensionality of the pore space, D. Regular structures
such as Sierpinski gaskets and carpets are not envisioned. Truncation means that a mini-
mum pore-size, r0, cuts off the power law distribution. Assumption of self-similarity makes
any pore shape distribution independent of pore size and, on the average, a pore length pro-
portional to its radius. The discrete model [63] was adapted [68] to generate a continuous
distribution of pore sizes. The volume fraction of the medium, F(r) dr occupied by pores
between radius r and r + dr is given by,

F(r) ∝ r2−D r0 < r < rm (5)

where r0 and rm are the minimum and maximum pore radii, respectively. The porosity of
the medium is found by integrating F(r) between limits r0 and rm with result,

φ = 3 − D

r3−D
m

∫ rm

r0

dr r2−D =
(

r0

rm

)3−D

(6)

Equation (6) is identical to the result of [63].
Application of critical path analysis to such a network to find the hydraulic conductivity

at saturation, K , develops a critical radius, rc, as the smallest pore on that infinite cluster
which has the largest possible value of the smallest pore. In terms of the critical volume
fraction for percolation, Vc = pc , rc is defined as follows,

Vc =
∫ rm

rc

F (r) dr (7)
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Thus, all the pores with radius rc ≤ r ≤ rm just barely percolate. An analogous integral
with lower limit r relates that r to arbitrary volume fraction, V . For Poiseuille flow, g is
proportional to r4 and inversely proportional to the pore length, itself proportional to r . Thus
g ∝ r3 and p − pc ∝ (g1−D/3 − g

1−D/3
c )/g

1−D/3
c , a result relevant for transforming cluster

statistics of percolation [28] to a form involving a minimum, or controlling, conductance.

3 Fusing Critical Path Concepts with Percolation Scaling and Cluster Statistics of
Percolation Theory to Generate W(t)

3.1 Finding a Distribution of Limiting Conductance Values

The cluster statistics of percolation theory give [28] the number of clusters, ns , per unit
volume with s total interconnected sites (or bonds) for any value of the site probability, p.
In particular, ns is approximated as [28],

ns ≈ s−τ exp
{−[

(p − pc)s
σ
]2}

(8)

with σ and τ standard exponents from percolation theory [28]. What is needed is a form
of the cluster statistics in which p (pc) is replaced by g (gc) and cluster volume by cluster
length N . Here N is a number (equal to the number of controlling resistances along one
dimension of the cluster); the linear extent of the cluster is then Nl, where l is a typical
separation of controlling resistances. One finds [25, 62], using the above result for p − pc ,

nN = 1

Nd+1
exp

{
−

[(
Nl

L

) 1
ν
∣∣∣∣1 −

(
g

gc

) 3−D
3

∣∣∣∣
]2}

(9)

The exponent for the correlation length ν = 0.88 in 3-D and 4/3 in 2-D [32], will be impor-
tant for later calculations. The probability, W(g;x), that a given system of Euclidean length,
Nl = x, is spanned by a cluster with controlling conductance g is then proportional to the
integral of NdnN over clusters of all sizes larger than or equal to the volume in question.
The result can be expressed in terms of the exponential integral [25],

Ei[z] =
∫ ∞

z

exp[−y]
y

dy

as

W(g;x) ∝ 1

β
Ei

[
α

(
x

L

)β]
(10)

where the parameters α and β are given by,

α =
∣∣∣∣1 −

(
g

gc

) 3−D
3

∣∣∣∣
2

and β = 2

ν
(11)

Here L3 is a representative elementary volume (REV), which corresponds to the smallest
volume for which statistical arguments, such as percolation theory, are accurate, and l ≈ L

was assumed [25]. We then set L = 1, meaning that x = 1 corresponds to the REV scale.
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An independent test of whether (10) predicts experimental hydraulic conductivity distri-
butions was made in [69] where W(g;x) was approximated by,

W(g;x) ∝ ln

[(
L

l + x

) 1
ν 1

|(1 − [ g

gc
]1−D/3)|

]
(12)

Thus the asymptotic behavior of Ei(x) involves a logarithmic divergence in W(g;x) at
g = gc . Since a logarithmic divergence is integrable, W(g;x) is normalizable over the con-
trolling conductance, g.

The solute concentration of the water introduced is assumed uniform. Thus, although the
probability that a given isotropic system is spanned by a cluster of minimum conductance g

is given by (10) and (11), the mass of solute advected through such clusters characterized by
minimum conductance g must be proportional to the expected water flux, itself proportional
to gW(g;x). This assertion is consistent with the following quote from [70] for massive
particles: “It is often assumed that the particle flux for a given channel is proportional to the
fluid flux there, which is highly plausible in the limit of small particle radius [32, 71, 72].
Furthermore, recent studies [73, 74] on the microscopic motion of particles in model porous
media show that this approximation is valid even when the radius of the particle is close to
that of the channel.”

3.2 Relationship of W(g;x) to W(t;x)

In order to use W(g;x) to give information on arrival times, we must relate the controlling
conductance, g, of a path to the time, t , solute takes to travel along that path, t (g). Absent
diffusion, the solution for t (g) is deterministic and [25],

gW(g;x)dg = W(t;x)dt or W(t;x) = gW(g;x)

dt/dg
(13)

3.3 Calculation of Cluster Transit Time, tg

In the following, we decouple the effects of the conductance distribution and connectivity
[25] by treating the conductances in series. Then the total time of travel is the sum of the
travel times through the individual pores along a quasi-one-dimensional path. This means
that it is necessary to find the transit times of individual pores.

The time that a solute requires to traverse one pore is proportional to 1/u, where u is the
typical velocity in that pore. Then uA, where A is the cross-sectional area of that particular
pore, must (aside from numerical factors) be proportional to Q, where Q is the volume flux
of water through the pore. Thus the time required for water-transported solutes to traverse a
pore is, t ∝ r/u ∝ rA/Q, where rA is proportional to r3, or the volume of the pore. Q for
all pores along a quasi-one-dimensional critical percolation path is identical and equal to
Qc , which is proportional to gc . Similarly Q for all pores along a quasi-one-dimensional
path near critical percolation is proportional to g, where g is the controlling (smallest) con-
ductance on such a path. The probability that a given pore has radius r is proportional to
[68] r−D−1 (though the fractional volume in such pores is proportional to r3r−D−1 = r2−D).
Q is a volume per unit time, but the time factor is explicitly removed (and called t0) be-
low so that Q is effectively only a volume. Under those stipulations, Q is r3 and t0 is a
fundamental advection time scale over a relevant pore. The value of t0 is not required as
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only functional dependences are relevant below. Using these inputs it is possible to write the
following expression of proportionality [25],

t (r) ∝ t0

∫ rm

r

dr ′ r ′3

Q

r ′−D−1

r−D
= t0

[∫ rc

r

dr ′ r ′3

Q

r ′−D−1

r−D
+

∫ rm

rc

dr ′ r ′3

Q

r ′−D−1

r−D

]
(14)

Division of the integral into two terms is useful for expressing the time in terms of the critical
time for percolation. Equation (14) must now be modified to account for effects of topology
on the transit time. The scaling of the time was noted to follow [25],

t ∝ |V − Vc|−(νDb−ν)

(
x

L

)Db

(15)

While one might assume that a solute transit time would involve dmin, an exponent that
describes the shortest path length [75] across the cluster, [29] showed that the scaling of
the time depends on the fractal dimensionality of the backbone, Db . In the present context
V and Vc may be considered to correspond to the volumetric moisture content, θ , and its
critical value for percolation, θt , and the final results obtained can refer either to saturated or
unsaturated media. The combined effects of streamline fluxes and tortuosity is given by the
product of (14) and (15). Evaluating the integrals in (14) and combining with (15) yields,
(note an additional factor gc/g in [25] that is in error),

t =
(

x

L

)Db t0

3 − D

1

(1 − θt )Λ−ν

[(
1 + θt

1 − θt

)(
gc

g

)1−D/3

− 1

][
1

|( g

gc
)1−D/3 − 1|

](Db−1)ν

≡
(

x

L

)Db

tg (16)

where tg , a cluster transit time, is defined by (16).
While W(g;x) contains a logarithmic divergence, t (g) in (16) contains a power-law

divergence at g = gc .

3.4 Results for W(t;x) Excluding Effects of Diffusion

Analytical solution of (13) for W(t;x) using (16) for t (g) is impossible since inversion
of t (g) to find g(t) is not possible. Numerical calculations were complicated by the fact
that at some times, only one value of g contributes to W(t;x), while at other times two,
or even three values of g do so. For each contribution one must apply an analogue to (13).
Results for W(t;x) (from [25]) are shown in Figs. 1a, b, for various combinations of fractal
dimensionality and critical volume fraction for percolation, Vc = θt . The result for W(t;x)

is rather insensitive to each parameter.
Results for W(t;x) differ significantly according to the relevant critical exponents for the

percolation problem that is relevant. Sahimi [32] has argued (and we agree) that wetting and
drying of porous media should be classed as invasion percolation problems. While Sahimi
and Yortsos [76] also argued that the distinction between random and invasion percolation is
not critical to many phenomena, insofar as the fractal dimensionality of the backbone, Db ,
is relevant (see (16) and the discussion before it referring to [29]) this distinction is relevant
to dispersion. In media that are saturated except for entrapped air, for example, Db from
invasion percolation should be used.

Values for the fractal dimensionality of the backbone, Db , and the minimal path, Dmin,
in various percolation models are taken from [30]. Using these values of Db it is possible to
predict W(t;x) for both invasion and random percolation applications.
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Fig. 1a Derived values of W(t)

for two different values of the
fractal dimensionality of the pore
space, D. D = 1 signifies a
nearly ordered medium, while
D = 2.7 generates a rather
disordered medium, thus showing
the relative insensitivity of the
form of W(t) to the
heterogeneity of the pore space

Fig. 1b (Color online) A similar
demonstration of the relative
insensitivity of the form of W(t)

to the critical volume fraction for
percolation

3.5 Spatial Distribution at an Instant in Time

Calculation of the spatial distribution, W(x; t), of solutes at a given time is closely related to
calculation of the distribution of arrival times at a given point in space. However, we cannot
simply integrate over all g holding x constant, since each g value is associated with its own
particular velocity.

Consider again the statistics, W(g,x), of clusters of size at least x dominated by mini-
mum conductances, g. W(g,x) represents once again the probability that an arbitrary parti-
cle will initiate its motion on such a cluster and can also travel at least x on that cluster. If the
solute is on a cluster described by W(g,x), its distance of travel, x, and mean velocity, 〈v〉
will be related by, x = 〈v〉t , where t is the time since the solute was initially introduced, and
〈v〉 is dependent on scale, x, as well as g. For consistency we require this distance x to be
identical to x in W(g,x). The pore size dependence of the mean velocity is independent of
the distance of travel, and can be roughly estimated using the framework already introduced
above as being inversely proportional to t (g) (in particular as t0/t (g)). Now, x ∝ t1/Db , so
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Fig. 2 (Color online) A typical
form of the spatial solute
distribution, W(x)

that 〈v〉 = x/t ∝ t (1/Db−1) ∝ x1−Db . Using these inputs we found [25] that,

〈v〉 ∝
(

t0

tg

)(
L

x

)Db−1

v0 (17)

where v0 is a pore scale velocity. Then one can write for the distance traveled,

x = L

(
t

tg

) 1
Db

(18)

where L ≈ v0t0. The probability that the particle has actually gone this distance x (at time t )
is then given by the probability distribution W(g,x) given in (10) and (11), but with the
value of x(t) inserted from (18). Then the logarithmic approximation of W(g,x) (12) would
look like,

W(g;x) ∝ ln

[(
L

l + L[ t
tg

] 1
Db

)
1

|(1 − (
g

gc
)1−D/3)|

]
(19)

In exponential integral form the argument is also expressed as such a product and again both
factors must be expressed consistently in terms of the same g value. Then one can make a
direct translation between W(g;x(t, g)) and W(x; t) in the same way as in (13),

W(x; t) = gW(g,x(t, g))

dx/dg
(20)

where dx/dg is obtained from (18) in terms of dtg/dg from (16), and where the final step
involves solving for g in terms of x and t using (18). Thus the results will include the value
of the time as a parameter, just as (13) included the value of the spatial coordinate as a
parameter. The appearance of W(x; t) for one combination of parameters is given in Fig. 2.
Using (20) the moments of the spatial solute distribution, in particular the variance, σ 2(x),
may be calculated with time t a parameter.

The variance of the solute distribution is determined from,

σ 2(x) = 〈
x2

〉 − 〈x〉2 (21)
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Fig. 3 Dependence of dispersion
coefficient, Dl(t), on time for
2-D invasion percolation (large
disorder) and for random
percolation systems in two and
three dimensions (each with
differing values of Db), each
with both large and small
disorder (D = 2.95 or D = 1)

where the averages are performed over W(x; t) from (20). Specifically, the dispersion coeffi-
cient (from (3)) Dl(t) = σ 2(x)/t , whereas the dipersivity, αl(x) = Dl(t)/v(t) = σ 2(x)/〈x〉.
Dl(t) so generated is not quite a power law, so it would have been better to use the derivative
form from (3).

We calculated Dl(t) and αl(t) numerically for two and three dimensional systems using
values [30] for Db appropriate for random percolation and invasion percolation (with and
without trapping) and for the cases of large (D = 2.95) and small disorder (D = 1). How-
ever we represent in figures only models with distinct combinations of critical exponents;
excluding those invasion percolation examples with the same Db as in random percolation.
Note that Dl(t) can be either an increasing or decreasing function of, t (Fig. 3). Thus, when
Dl(t) can be represented as a power law in time, the relevant power may be negative or posi-
tive. These values are summarized in Table 1. Note that for 2-D random percolation systems
with large disorder we find a power of 0.37 for small times (about 5 decades). In [31] the
dispersion coefficient was given as a function of system size for 2-D random percolation
simulations on a lattice using a log-normal distribution of local conductances. Dl was found
there to behave as xε with 0.56 < ε < 0.68. Using the 2-D value of Db = 1.6432 [30], this
would correspond to powers of time between 0.56/Db = 0.34 and 0.68/Db = 0.41, and our
results are in nearly precise agreement.

The dispersivity is usually reported as a power, δ, of the system size, x. We give graphi-
cally determined values of this power in Table 1. More importantly, we plot the dispersivity
vs. system size x in Fig. 4 for all distinct sets of values of ν, Db , and D. We also reproduce
a rule of thumb from a review of experiments [8].

To generate a power, δ, we let Excel optimize the linear fit on a log-log representation.
But blind application of such a procedure to some cases can lead to an overestimation of δ.
The range of values given in each case represents relative extremes in disorder of the pore
space, i.e., 1 < D < 2.95. For a typical porosity (of soils) of 0.4, this range of fractal dimen-
sionalities corresponds to a maximum to minimum pore-size ratio that ranges from about 1.3
to 27,000. But for applications at larger length scales [67], where more and less highly con-
ductive regions can correspond to different sediment types, smaller volume fractions of the
more highly conducting sediments lead to smaller contrasts in conductance (more nearly 4
orders of magnitude). In any case, we refer to these two extremes as small and large disorder,
respectively.
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Table 1 Output parameters
describing dispersion for various
percolation models with input
parameters from [30]

RP = random percolation, IP =
invasion percolation, T =
trapping, and NT = non-trapping
*The wide spreads in these
values incorporates the slope
breaks shown in Figs. 3 and 4.

Model Dmin Db Dl(t) Dl(t)/〈v〉

3D

Site NTIP 1.37 1.87 −0.30 < α < −0.16 1.13 < δ < 1.16

Site TIP 1.37 1.86 −0.30 < α < −0.16 1.14 < δ < 1.15

Bond TIP 1.46 1.46 0.053 < α < 0.081 1.14 < δ < 1.15

RP 1.37 1.87 −0.30 < α < −0.16 1.13 < δ < 1.16

2D

NTIP 1.1293 1.6422 −0.13 < α < 0.37* 1.07 < δ < 1.51

Site TIP 1.214 1.217 0.4 < α < 0.41 1.04 < δ < 1.33

Bond TIP 1.217 1.217 0.4 < α < 0.41 1.04 < δ < 1.33

RP 1.1307 1.6432 −0.13 < α < 0.37* 1.07 < δ < 1.51

Fig. 4 Scaling of the
dispersivity, αl(x) with x for 2-D
and 3-D random and invasion
percolation models (each with
differing values of Db), each
with either small or large
disorder (D = 1 or D = 2.95).
An approximate relationship for
predicting αl(x) [8] is also
included. Note that
quasi-universal behavior of αl(x)

sets on at an x that corresponds
to the change in slope in the time
dependence of Dl(t)

Experimental values of the power α have been noted typically to be small (� 1) and
positive, while experimental values of δ have been summarized as lying between 0.76 and
1.53 [6, 7, 10]. Thus our values of these parameters are in accord with experimental values.
For a more convincing demonstration consider the comparison in Fig. 5 of several of our
results with nearly 1000 experiments [7, 16, 77, 78]. This agreement (roughly 8 orders of
magnitude of dispersivity over 6 orders of magnitude of length) was produced without use
of adjustable parameters, although L = 1 was taken to be 1 meter. The relevance of the same
length scale to nearly 1000 experiments all over the world was very surprising to us and will
be discussed in a future publication.

Whether negative values of the power α should be trusted depends on whether the central
limit theorem applies; this is in principle an interesting question but we cannot answer it
here. At small enough times and spatial extents the central limit theorem need not apply,
whereas the power-law scaling relationship (8) between t and x makes σ 2(x)/x a positive
power of x even when σ 2(x)/t is not a positive power of t . Note that some numerical
simulations appear consistent with Gaussian behavior in time but inconsistent with Gaussian
behavior in space [79]. Figures 2–5 are shown here for the first time.
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Fig. 5 (Color online) Comparison of dispersivity predictions with experiment for 2-D and 3-D random per-
colation models, each with either small or large disorder. Since only the 2-D invasion percolation system
with large disorder lies outside these limits (see Fig. 4), it is the only invasion percolation model shown.
Original data compilations are from Neuman [7], Haggarty [77], Pachepsky et al., [16], and Vanderborght
and Vereecken [78]. The number of experiments is given in parentheses for each entry in the legend. The data
set of [78] is so large that we only represent their values of the mean and standard deviations of a log-normal
distribution of αl(x) values, and connect them with vertical lines

4 Treatment of Diffusion Effects

We treat the effects of diffusion only at the pore scale. Equation (1) is, at the pore scale, con-
sistent with treatments based on the Peclet number, Pe. We wish to represent the probability,
f , that a particle diffuses off a given path characterized by a given flux at some particu-
lar pore with radius r (and length l proportional to r). Equation (1) derives from the idea
that probability fluxes are proportional to concentration gradients; thus probabilities per unit
time for individual particles are constant. This implies that the probability that a particle can
exit a given pore by diffusion is the ratio of the advection time, tA to the molecular diffusion
time, tD . tD = Dm/r2, while tA = r/v [25]. Then the probability, fi , that a given particle
leaves pore i by diffusion is (also found in [80]),

fi ∝ tA

tD
= 1

Pe
= Dmr

Q
(22)

A compatible result that the time for escape from a dead-end is proportional to Pe was found
in [81], as transition rates and survival times are inverses of each other. The final equality
arises from the identity Q = Av ∝ r2v for the fluid flux Q. The assumed proportionality of
pore length and radius makes A/l ∝ r . On a path with conserved Q, the largest radius on the
path dominates on account of its smallest value of Pe. The probability, P , that the particle
remains on the flow path at a given pore is then 1 − f . In order to stay on the given flow
path it must stay on at every opportunity, a product of 1−f over all the pores along the flow
path. Provided that f is small enough (high Peclet numbers) we can use the relationship
exp(−dx) ≈ 1 − dx to transform the product

∏
i

(1 − fi) (23)
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to

exp

[
−

∑
i

fi

]
= exp

[
−

∑
i

1

Pe

]
(24)

We can simplify the sum inside the exponential by representing it as the product of a typical
value of P−1

e and a number corresponding to the frequency of opportunities to “jump” to
another flow path. This number is essentially the number of correlation lengths, L, traversed,
and can be found by taking the product of the number of pores visited on a path (x/rm)df |1−
(g/gc)

1−D/3|−df and the fraction of pores that provide close contact with other paths rm/L.
Here, in accord with the observations of [40] we neglect any cases for which the particle
diffuses into a pore with no flow (although this underestimates the dispersion somewhat).
Now the probability that a particle does not leave (through diffusion) a path at any point up
to the Euclidean distance x is

exp

[
− rm

L

(
x

rm

)dmin
∣∣∣∣ 1

(
g

gc
)1−D/3 − 1

∣∣∣∣
dmin

(
1

Pec

)]
(25)

The exponent dmin is the fractal dimensionality of the optimal path [75]. We have assumed
that the spatial tortuosity factor is relevant to counting the number of opportunities for
diffusion-induced transitions off the path. It is possible that for consistency the choice here
should also be the mass fractal dimensionality, Db as chosen for the total time of transit
(since that argument takes into account branching of the paths [29]), but we do not yet have
simulations with which we can test our results and make a choice. In addition to the obvious
tendency for factor (25) to reduce the contribution of highly tortuous paths (with g near gc)
to large travel times, it also reduces the tendency of very slow paths (with small controlling g

and thus small Pe) to contribute to large travel times. Equation (13) must now be multiplied
by result (25) to generate,

W(t) dt = gW(g)

dt/dg
exp

[
− rm

L

(
x

rm

)df
∣∣∣∣ 1

(
g

gc
)1−D/3 − 1

∣∣∣∣
df

(
1

Pec

)]
(26)

For Pe = ∞, factor (25) equals 1 and results (13) for pure advection are recovered exactly.
For large Pe (> 300, for example, as quoted in [34, 35]) the product of rm/PeL0 may be
as small as 1/3000, and the exponential factor will have little influence until the system is
thousands of pores on a side, so it is likely that our treatment of jumps to other flow paths is
adequate. Thus it might seem that the claimed lower bound of Pe ≈ 300 for which diffusion
may be neglected [34, 35] should be approximately verified here as well. This question turns
out to be more complex, if our analysis is correct. Our use of rm/PeL0 may ultimately be
equivalent to other investigators’ use of P−1

e (in view of the equivalent interpretation in terms
of diffusion out of a pore), and to first approximation we treat the two quantities equivalently.
Assuming that this choice was appropriate, the Pe scaling of Dl(t) that we generate has the
right power (ca. 1.2) in the right range of Pe values 1 < Pe < 100 [40, 82–85]. However,
assumption of this equivalence also means that the effects of diffusion on W(t;x) are seen
at very large values of Pe (see Fig. 6). Figure 7 shows effects of varying Pe on Dl(t) with
Fig. 8 giving the dependence of the maximum Dl(t) on Pe.

When f becomes much less than 1 already over a single pore (for Pe ≈ 1) our treatment
yields a probability of being transported to all neighboring pores as roughly equal, consis-
tent with Gaussian spreading, and not with diffusion on a fractal. The fractal structure of the
critical paths is important only during flow, not during diffusion. Although this point may
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Fig. 6 (Color online) W(t;x) for two-dimensional random percolation systems with increasing values of the
Peclet number, Pe. For small values of Pe, roughly 10−3, the long-time tail of W(t;x) has nearly disappeared,
and the superlinear scaling of the dispersion coefficient with Pe sets on

Fig. 7 (Color online) Dispersion
coefficient for three-dimensional
random percolation systems as
function of time for various
(inverse) Peclet numbers, which
are given for each curve. Note
that the infinite Peclet number
solution has a maximum in this
case. As a consequence, increase
in the Peclet number past a given
value (about 108) cannot yield an
increase in the dispersion
coefficient, which is already
bounded

be argued theoretically in the context of electrical conductivity [86], perhaps the more con-
vincing argument is based on experiment, which shows little or no evidence of the relevance
of such fractal structures. Most electrical conductivity and diffusion measurements exhibit
characteristics of universal scaling of percolation with no pore-size contribution at all [87].

When factor (25) is analyzed at large enough length scales, x, the exponential becomes
rapidly very small. This means that, for any value of Pe, large enough length scales interrupt
the coherence of the fractal solute paths and destroy the long tail in the solute arrival time
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Fig. 8 Scaling of Dl with Pe for highly disordered media (largest pore sizes thousands of times larger than
the smallest). Note that the value of Dl for infinite Pe is reached only after 8 orders of magnitude increase
of Pe (for five systems), while Dl continues to rise in the sixth. Also the typical increase in Dl here is about
three and a half orders of magnitude, at least two orders of magnitude more than for nearly ordered media
(with largest pore size less than 50% larger than the smallest). Open triangles 2-D invasion, dmin = 1.22,
open circles 3-D invasion, dmin = 1.37, open diamonds 2-D invasion, dmin = 1.13, dashes 2-D random,
dmin = 1.13, crosses 3-D random, dmin = 1.46, open squares 3-D random, dmin = 1.37. The inset shows the
Excel value of the slope for two cases

distribution. The arguments of [57] and [88] (quoted in [12]) then imply that, if the second
moment of the arrival time distribution exists, the central limit theorem applies and Gaussian
spreading is recovered. This discussion is reminiscent of [89] (“Effect of scale on solute
dispersion in saturated porous media”), although their theoretical context was a discussion of
Taylor-Aris dispersion in a single capillary [89, 90]. If such concepts apply at greater scales
as well, our results for the dispersivity (Fig. 5) are not valid. Because of the agreement with
experiment we conclude that the appropriate value of P−1

e at larger length scales is extremely
small and diffusion is seldom relevant.

For the range 1 < Pe < 300 (or so) an ideal solution would be to develop a set of gener-
alized network-like equations (actually discretized Chapman-Kolmogorov equations—see
again references [89, 90]) that allow particles to transfer both to and from (fractal) flow
paths. The basis of such equations is simply the conservation of probabilities when sum-
ming the probability fluxes onto and off of all paths in the network. To solve such equations
for W(t) one must sum over all the network paths whose arrival times sum to a given value.
The actual sum over path times in a power-law distribution (due to the power-law tortuos-
ity), however, should be dominated by the longest individual step, meaning that our simpler
approach of identifying an extreme value may be a useful proxy. This is indeed the basis of
our fundamental hypothesis for incorporating diffusion into the present framework.

Consider again Fig. 6 for W(t;x) in the presence of diffusion. The power-law tail is cut
off beyond a value of t which depends on Pe. Calculations imply that Dl(t) according to (26)
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Table 2 Tabulated values of
calculated exponent describing
scaling of Dl(t) with Pe

Model Dmin Db Pe scaling exponent

3D

Site NTIP 1.37 1.87 1.286

Site TIP 1.37 1.86 1.286

Bond TIP 1.46 1.46 1.285

RP 1.37 1.87 1.282

2D

NTIP 1.1293 1.6422 1.038

Site TIP 1.214 1.217 1.377

Bond TIP 1.217 1.217 1.377

RP 1.1307 1.6432 1.038

Average 1.22 ± 0.14

diminishes extremely rapidly at time values associated with the cut-off in W(t;x) (Fig. 7).
Such rapid diminution is likely inappropriate (difficulties with the central limit theorem),
and we assumed that Dl(t) should thus in most cases reach some maximum and then be
independent of time for larger t values. Assumption of a constant value of Dl(t) for larger
times is consistent with the central limit theorem (analogously to [89] and [90]). Thus when
we estimate the scaling of Dl(t) with Pe, we choose the largest value of Dl(t) for each given
Pe value. For 1 < Pe < 100, the maximum Dl(t) always occurred at the initial time step,
allowing straightforward representation of Peclet number scaling (Fig. 8) in this region. The
inset shows Excel determined fits to straight lines for two systems.

5 Comparison with Experimental Summary of Peclet Number Scaling

The typical scaling of Dl(t) with Pe in the range 1 < Pe < 100, as reported in the following
references [40, 82–85] is that Dl(t) is proportional to P1.2

e . Further the general conclusion
of [83, 84], that “the influence of both heterogeneity and high Peclet numbers results in
asymptotic behavior only being seen after movement through many throats,” is certainly
consistent with the general treatment here. Some of the above references are experimental,
others are from simulations. However, while the power given is relatively consistent, there
is some uncertainty as to the boundaries of the range of Pe for which the superlinear power
should be valid with some authors giving a much narrower range ([85], for example). Our
results show some curvature in the range 1 < Pe < 100, but if we allow Excel to fit Dl(t) to
a power of Pe in this range, we get the results shown in the table below. Our average power
is in very close agreement with the above published values, and for virtually the same range
of Peclet numbers.

6 Discussion

Our calculations appear simultaneously to be consistent with many general results for dis-
persion in porous media. We also suggest that our calculations should apply to all strongly
disordered systems, regardless of scale or type of disorder. Our results may even be relevant



560 A.G. Hunt and T.E. Skinner

to systems with minimal disorder. These arguments are supported by the agreement between
our results and experiment for the dispersivity in Fig. 5 as well as the agreement between
our results and simulations [31] for the dispersion coefficient in 2-D random percolation,
since the simulations were done on a lattice with a different form of the conductance dis-
tribution. Figure 5 also suggests that diffusion is seldom significant at larger length scales,
since theoretical results depicted were obtained for pure advection.

Our formulation is distinct from any that attribute long-tailed dispersion to geometric
(fractal) or related structures extant in porous media [91–93]. It is also distinct from those
[94], which develop a distribution of arrival times from considering the distribution of short-
est paths connecting two sites on a percolation cluster (in view of the binary distribution of
permeabilities considered there), although general features of the arrival time distribution
are shared. Our perspective may be contrasted with that of reference [95], where the authors
find that similar scaling of dispersion can result from long-range correlations in permeabil-
ity fields in a percolation model. Finally, perhaps surprisingly, the distribution of clogging
times (in two dimensions) [96] and particle penetration [97] in filtration processes resemble
closely our results for arrival time distributions [25] in two dimensions as well as the spatial
dependence of the dispersivity (here). While the basis for the calculations appears quite dif-
ferent, the slope of the tail of the calculated arrival time distribution (approximately −1.5)
and simulated clogging time distribution (also −1.5) appear to be essentially identical. Con-
sidering that very nearly the same slope (−1.58) in the arrival time distribution tail is also
observed for solute particles in two-dimensional flow simulations on a percolation struc-
ture [98] as well as for solute arrival time distributions (−1.5) in experiments of fracture
flows [99] (where it has apparently been erroneously attributed to diffusion into and back
out of the matrix [99]), we speculate that our arrival time distribution may have relevance to
filtration processes and many field experiments (with dispersivity values in Fig. 5) as well.

The assumption of a local power-law in conductances was not relevant to the disper-
sion coefficient as the results of a 2-D simulation with a log-normal distribution of local
conductances also gave a power-law behavior with the same exponent.

Some annoying fluctuations in our results exist. We presume these to be complications
from the coarseness of our discretization procedures (decadal discretization in the case of
Peclet numbers) when applied to selection of a maximum value of Dl(t).

7 Conclusions

Previous calculations [25] of an arrival time distribution for solutes advected through disor-
dered media were based on the synthesis of critical path analysis [26, 27], cluster statistics of
percolation theory [28], and percolation scaling concepts [29, 30]. These calculations could
be applied to any disordered media as well as possibly quite ordered media, as long as the
effects of finite Peclet number transport could be ignored. The calculations appeared to al-
low a quantitative prediction of a distribution of solute arrival times, W(t) [25]. In that case
we were also somewhat surprised to see that a theoretical construction built on the assump-
tion of wide ranges of pore sizes could generate the appropriate prediction for a medium
constructed of single pore sizes, but at the percolation threshold [98].

Here we set out to 1) generate numerical results also for the spatial distribution of solutes
at an arbitrary time, W(x; t), and 2) incorporate effects of diffusion into dispersion by ad-
vection, albeit only in an asymptotic way. It appears that our treatment of dispersion by
advection yields appropriate scaling of Dl(t) with time and αl(x) with spatial scale, while
our asymptotic treatment of diffusion, at least in cases of strongly disordered media, yields
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the correct scaling of Dl(t) with Peclet number for Pe values up to 100 or so. For values of
Pe between 100 and 1000 or so, we appear to underestimate the dependence of Dl(t) on Pe,
as [82–84] report a separate regime of approximately linear dependence of Dl(t) on Pe,
whereas our approximate power diminishes more rapidly. However, this regime is approxi-
mately reproduced in 2-D invasion percolation, for which we had no complications from a
non-monotonic dependence of Dl(t) on t .

Future work should address more quantitatively the intermediate and low Peclet number
regimes, where we expect that a discretized Chapman-Kolmogorov equation of a similar
form to that of the Continuous Time Random Walk equation may be appropriate. Such a
development would put our treatment on a stronger theoretical footing and could provide
bases for choosing a fractional calculus, Fokker-Planck equations, etc. Further research into
the apparent reduction of Dl(t) at large values of t (for most systems) is also necessary to
establish whether the central limit theorem is violated.
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